Stimulation by de novo-synthesized ceramide of phospholipase A(2)-dependent cholesterol esterification promoted by the uptake of oxidized low-density lipoprotein in macrophages.
نویسندگان
چکیده
The involvement of cytosolic phospholipase A(2) (cPLA(2)) and ceramide in the accumulation of cholesteryl ester induced by the uptake of oxidized low-density lipoproteins (oxLDL) in macrophages was investigated. Uptake of oxLDL by [(3)H]oleic acid-labeled macrophages stimulated the formation of cholesteryl oleate, and this process was completely inhibited by a cPLA(2) inhibitor. Under the conditions, a time-dependent increase in ceramide was observed, while sphingomyelin levels were unaffected. The production of ceramide was completely inhibited by fumonisin B1, an inhibitor of the de novo synthesis of ceramide, and oxLDL-induced cholesteryl oleate formation was inhibited partially. Treatment of the cells with sphingomyelinase accelerated the formation of cholesteryl ester. Furthermore, sphingomyelinase or cell-permeable ceramide induced the release of oleic acid, and this was inhibited by a cPLA(2) inhibitor. These results suggest that activation of cPLA(2) is responsible for the formation of cholesteryl ester induced by the uptake of oxLDL in macrophages, and that de novo-synthesized ceramide is implicated, at least in part, in this process.
منابع مشابه
Oxidized LDL activates phospholipase A2 to supply fatty acids required for cholesterol esterification.
We examined the roles of phospholipase A2 (PLA2) in oxidized LDL (oxLDL)-induced cholesteryl ester formation in macrophages. In [3H]oleic acid-labeled RAW264.7 cells and mouse peritoneal macrophages, oxLDL induced [3H]cholesteryl oleate formation with an increase in free [3H]oleic acid and a decrease in [3H]phosphatidylcholine. The changes in these lipids were suppressed by methyl arachidonyl f...
متن کاملRegulation of acetylated low density lipoprotein uptake in macrophages by pertussis toxin-sensitive G proteins.
Class A scavenger receptors (SR-A) mediate the uptake of modified low density lipoprotein (LDL) by macrophages. Although not typically associated with the activation of intracellular signaling cascades, results with peritoneal macrophages indicate that the SR-A ligand acetylated LDL (AcLDL) promotes activation of cytosolic kinases and phospholipases. These signaling responses were blocked by th...
متن کاملOxidative modification of beta-very low density lipoprotein. Potential role in monocyte recruitment and foam cell formation.
Oxidative modification of low density lipoprotein (LDL) generates a form that is degraded much more rapidly by macrophages and may thus be more atherogenic than unoxidized LDL. Recently, we provided evidence that oxidative modification of LDL may play a significant role in the generation of fatty streaks in the LDL receptor-deficient rabbit. The major lipoprotein in cholesterol-fed animals is t...
متن کاملParticipation of the arachidonic acid cascade pathway in macrophage binding/uptake of oxidized low density lipoprotein.
Arachidonic acid cascade inhibitors, including phospholipase A2 inhibitors, dexamethasone and quinacrine (mepacrine), cyclooxygenase inhibitors, indomethacin and aspirin, and lipoxygenase inhibitor AA861, prevented foam cell formation and cholesterol accumulation in the incubation of thioglycollate-induced mouse peritoneal macrophages with oxidized low density lipoprotein (LDL) at 37 degrees C ...
متن کاملModification of very low density lipoproteins leads to macrophage scavenger receptor uptake and cholesteryl ester deposition.
Chemically modified low density lipoproteins (LDL) are recognized by the macrophage scavenger receptor and can lead to substantial cholesteryl ester accumulation in cultured macrophages. Uptake of modified lipoproteins in vivo could contribute to foam cell formation during generation of the atherosclerotic plaque lesion. In the present study, modification of human pre-beta migrating very low de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular signalling
دوره 14 8 شماره
صفحات -
تاریخ انتشار 2002